Processing the Bouguer anomaly map of Biga and the surrounding area by the cellular neural network: application to the southwestern Marmara region
نویسنده
چکیده
An image processing technique called the cellular neural network (CNN) approach is used in this study to locate geological features giving rise to gravity anomalies such as faults or the boundary of two geologic zones. CNN is a stochastic image processing technique based on template optimization using the neighborhood relationships of cells. These cells can be characterized by a functional block diagram that is typical of neural network theory. The functionality of CNN is described in its entirety by a number of small matrices (A, B and I ) called the cloning template. CNN can also be considered to be a nonlinear convolution of these matrices. This template describes the strength of the nearest neighbor interconnections in the network. The recurrent perceptron learning algorithm (RPLA) is used in optimization of cloning template. The CNN and standard Canny algorithms were first tested on two sets of synthetic gravity data with the aim of checking the reliability of the proposed approach. The CNN method was compared with classical derivative techniques by applying the cross-correlation method (CC) to the same anomaly map as this latter approach can detect some features that are difficult to identify on the Bouguer anomaly maps. This approach was then applied to the Bouguer anomaly map of Biga and its surrounding area, in Turkey. Structural features in the area between Bandırma, Biga, Yenice and Gonen in the southwest Marmara region are investigated by applying the CNN and CC to the Bouguer anomaly map. Faults identified by these algorithms are generally in accordance with previously mapped surface faults. These examples show that the geologic boundaries can be detected from Bouguer anomaly maps using the cloning template approach. A visual evaluation of the outputs of the CNN and CC approaches is carried out, and the results are compared with each other. This approach provides quantitative solutions based on just a few assumptions, which makes the method more powerful than the classical methods.
منابع مشابه
Provide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery
Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...
متن کاملTectonic modeling of Konya-Beysehir Region (Turkey) using cellular neural networks
In this paper, to separate regional-residual anomaly maps and to detect borders of buried geological bodies, we applied the Cellular Neural Network (CNN) approach to gravity and magnetic anomaly maps. CNN is a stochastic image processing technique, based optimization of templates, which imply relationships of neighborhood pixels in 2-Dimensional (2D) potential anomalies. Here, CNN performance i...
متن کاملStructural Controls on Cu Metallogenesis in the Dehaj Area, Kerman Porphyry Copper Belt, Iran: A Remote Sensing Perspective
Structural analysis of remotely sensed data provides a method of assessing the structural significance of regional metallogenesis in the Dehaj area as the northwestern part of the Kerman porphyry Cu belt. This belt is consisted of dominant Eocene volcanics and the Dehaj type subvolcanic intrusives. In the study area, geologically, Cu-mineralization is hosted by the Kuh-e-Panj type subvolcanic i...
متن کاملCombination of Artificial Neural Network and Genetic Algorithm to Inverse Source Parameters of Sefid-Sang Earthquake Using InSAR Technique and Analytical Model Conjunction
In this study, an inversion method is conducted to determine the focal mechanism of Sefid-Sang fault by comparing interferometric synthetic aperture radar (InSAR) technique and dislocation model of earthquake deformation. To do so, the Sentinel-1A acquisitions covering the fault and its surrounding area are processed to derive the map of line of sight (LOS) displacement over the study area. The...
متن کاملA comparison between knowledge-driven fuzzy and data-driven artificial neural network approaches for prospecting porphyry Cu mineralization; a case study of Shahr-e-Babak area, Kerman Province, SE Iran
The study area, located in the southern section of the Central Iranian volcano–sedimentary complex, contains a large number of mineral deposits and occurrences which is currently facing a shortage of resources. Therefore, the prospecting potential areas in the deeper and peripheral spaces has become a high priority in this region. Different direct and indirect methods try to predict promising a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007